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ABSTRACT: The approximation of a function by a sum of complex
exponentials, in general, is a nonlinear optimization problem.
The optimization problem, however, is linearized through the
application of the pencil of function method. This non~-
iterative method yields the best exponential approximation 1
for a given order of approximation. The method differs
radically from the classical Wiener least squares approach

in the sense that exponents calculated by the pencil of
function method are directly proportional to the integrated
squared error in the approximation. As the integrated squared
error approaches zero, the exponents calculated by the pencil
of function method approach the best least squares exponents
in a continuous fashion. Among the advantages of the method
are its natural insensitivity to noise in the data and
explicit determination of the signal order. Examples are
presented to illustrate the stability of this technique
especially when noise is present in the data.
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I. INTRODUCTION

The approximation of an arbitrary real function x(t) which is
nonzero for t > 0, by a sum of complex exponentials often leads to
a nonlinear least squares problem. Recently Goulb [1] has presented
a class of least squares problems in which the variables separate.
One of the objectives of this paper is to show that the pencil of
function method also decouples the approximation problem [2-3]}.
In this presentation we apply the pencil of function method to both
the continuous function x(t) and y(t), which is the discretized
version of x(t). We show that the resulting expressions are quite
different for the two cases. First we present the discrete
approximation problem followed by the continuous case. Finally
examples are presented to illustrate the stability of this method

in the calculation of the exponentials particularly for noisy data.

2. Definition of the Problem

The problem of interest is to approximate an arbitrary square

integrable function x(t) by a sum of complex exponentials, i.e.

[t kel
x(t) =] ) Ay ot {e} . exp{sit} (1)
i=1 k=1
where
)
m,=n (2)
j=1 1

Here s, are referred to as the poles of the system and m, is the

order of the pole s n is the total number of poles counting

the multiplicities of repeated poles.

1)
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In most problems, however, we do not deal with continuous
functions but with sampled sequences. So we will assume that the
sequence {y(p)} has been sampled at a sufficiently fast rate from
the continuous function x(t) so that no information has been lost.

Thus for a sampled data system we have

.,
k-1 P
ye) =Y Y A, {p} {z,} (3)
1=1 k=1 1k i
where
z, = exp{siT} (4
where T is the sampling interval. Here z, are referred to as the

i

z-domain poles.

The problem of approximating Aik and 8y in (1) or Aik and zy in

(3) is a nonlinear approximation problem. However we can linearize

this nonlinear problem through the introduction of the T operator.

3. Properties of the T Operator.

The T operator is defined to be an operator similar to a reverse
integral operator. It is defined on the space of squared integrable

functions in the following way:

TIY] A T{y(P)} A { § y(k)} (5)
k=p

so for example

1{0,1,0,0,...} = {1,1,0,0,0,...} (6)
and

T{p(0.5)P} = {2p(0.5)F + 2(0.5)P} )
From the definition of T in (5) we can prove the following:

(a) T is a linear operator, since

T{aY+RZ] = oT[Y]+BT[Z] (8)

(2)




where o and % are scalar quantities. [Y] and [Z] are two sampled
data sequences as defined in (5) .

(b) A constant multiplication of a unit impulse remains unchanged
by the application of the T operator, i.e.

T[as] A T{a,0,0,...} = aT{1,0,0,...} = aT[§] 9)

{c) for simple poles (i.e. m1=1 for all i) we have

) Ppoy) Sl }
T{Y] = T{y(p)} = T{ ) A, (z))"'} =1{ ) A = (10)
=1 1 1 g1 1172y
In particular we have
P
a2 } = (A Q1)

(d) Successive operations of T are obtained in the following way:

To = 1

Tk[Y] - Tk-l

[TY] (12)
and thus we can generate a polynomial in T. One such polynomial,
which will be of fundamental importance, is

[i~-(1-2)T ]K

(e) Also, it can be shown that

i, .p i .p 171 i k, .p
(1-2)T{(P) " (2)"} = (p) " (2)"+z ) (IT{(p) (2)"} (13)
k=0
where

i i!

W= (1-k)! (14)
Properties (c) and (e) demonstrate that the application of the

operator T on the sequence {y(p)} preserves the poles of the sequence.

4. Properties of the jl-(l—g)llk Polynomials:

From property (c) it is clear that if {y(p)} be a sequence having
a pole z repeated with multiplicity m, then the multiplicity of 2z in

the sequences [l—(l—z)T]k{y(?)} is m-k, k=0,1,2,...,m-k (15)

3)
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Furthermore,
[1-(1—z)T]k{y(P)} = {0} for k > m (16)
Geometrically, the above property asserts that the operator
[1—(1—z)T]k projects Y into a lower dimensional hyperplane in z of

order m~k. Hence, it follows that, if the operator

n
T [1-(-z)TI™L (6¥)
i=1
is applied to [Y] which is given by
n i k-1 P
Y1={y@l=0(] 1 a4, )"} (18)
i=1 k=1

then the result would be the null sequence {0}. We have thus

linearized the problem by first attempting to estimate the poles zg.

After the poles zg have been computed, the residues A,, at the poles

1]

can be obtained by a least squares procedure.

5. Determination of the Poles z,.
L

In order to determine the poles z , we define the following

i’
operations. Let
2

[Y,] A TI¥, ] ATITY,] = T7[¥,] (19)
and

[z,] & [1-(1-2)T](¥,] = [1+dT](Y,] (20)
where

d A -(1-2) (21)

From (20) it is seen that
[z,] = [¥, 1+alTI0Y, 1=[T}Y,_HWITI[Y, |1} = [T][z,_|] (22)
The sequence [Zi] is called a pencil of functions parameterized
by the scalar parameter d [2-5]. It is a linear combination of functions

[Yi] and [Y ] through the parameter d. The pencil of functions

i+l

contain very important characteristics from a system identification

(4)




o !

point of view. When the set [Zi] of n+l functions becomes linearly
dependent then (d+1) becomes a system pole. Now we define the gram
matrix [H] whose ith row and jth column are defined as

(8 = (o, & <z,.2> = <[wT)IY], (1K1Y, 1)

= 1Yy oYy Y Y Y Y Y YT (2)
where
VLY = pZo{yi(p)}{yj(p)} (24)

and d* denotes the complex conjugate of d. The underbar distinguishes
a matrix from a sequence.

The significance of the gram matrix [H] lies in the fact that the
set [le, [22], [23] cee [Zk] are linearly independent if and only if
det[H]>0, whereas it is linearly dependent if and only if det[H]=0.
Thus in order that there are n poles in the sequence [Zi] it is
necessary and sufficient that det{H] be positive or zero according
as k<n, or k>n. [Tﬁis is clear from (16)]

After some very tedious algebraic manipulations it can be shown

that
kK k
i-1 -1
decll = [ @@ (25)
i=1 j=1
where Q,, are the diagonal cofactors of the matrix [G] whose elements

i]

are defined as

(6] = [gyy & <Y,,¥

i pZO{yi‘P’”’j (®)}] (26)

An on line procedure for determining (26) is given by the following

equations:
x, (k) =y, (k)
m-1

x () = ] x, (V)
v=k

(5)




M i
= (-1)i+j 2 [xi(k)xj(k)— ) (k-m)i_vxv(M)x (k)- % (k-M)j—vxu(M)xi(k)

g
1] k=0 v=1 377 u=1

i .
+i9 x ()x (10) () TV
: v=l v=1 H
! and
’ Mil
x, (M) = x, ;).

1 veo i1

Here it is assumed that xi(p)=0 for p>M. This assumption is reasonable
for practical problems.
When the order of the approximation k in (25) becomes equal to the
order of the system the sets [Zl], [22], eee [Zn] becomes linearly i

dependent and hence

k k
dgetfnl =0 = ) ) @' @I .. 27
i=1 j=1 J
: Since
- ) i
Qij + det:[g]nQiijj = Qiinj (28)
and
det[G] = O when det[H] = O, (29)
(27) can be rewritten as %
n+l n+1l < ) i
{ Wa, @01 ZJagj(d)“'J+l} =0 (30) é
i=1 - 3=l

From (30) the poles z, can be obtained from the solution of the following

i

polynomial equation:

n+l
‘ =i+
‘ 2511('1*’2)“ oy (31)
i=1
and the poles s, are obtained from z, through the transformation
1
Sy =7 in [zi]

Since the function to be approximated is considered to be real

as indicated by (30).

*
there will also be a complex conjugate set of poles 8,




Once the poles s, or z, are determined the unknown constants Ai

i i i

can be determined from a least squares procedure.
So far we have done the analysis for discrete systems. However
the analysis for the continuous system will be done in section 6.

5. Error Analysis in the Presence of Noise.

When the signal x(t) or the sequence {y(p)} does not contain any

noise then the poles z_, given by (31) are the exact poles of the

i
system. However if noise is present then they no longer represent the
system poles. The objective of this present section is to find the
error in the location of the poles due to additive noise.

Let {e(p)} be the noisy sequence and let there exist an approximant
of {e(p)} and call it {y(p)}, which provides the best exponential
approximation of the signal in the given subspace. The assumption made
here is that the optimum approximant is unique.

For convenience let us call

e(p) = y(p) + ev(p) (32)

We now introduce the error sequence in the normalized form

[{e(p) - y(P)}] = elx(p)} (33)
where € is a non-negative real number chosen to establish the equality
e} = Ty} (34)

P P

Clearly € represents the fractional error in the representation and is
therefore a measure of the degree of approximation of {q(p)}. If
{y(p)} is the best approximant of {e(p)}, then {r(p)} must be
orthogonal to {y(p)}. Thus, in particular, e€=0 characterizes the
perfect representation.

Now consider the following sequences:

€))

x




and

[E1] = {el(p)} {e(p)}

(E,] = {ez(p)} = T{el(p)}

[E ] = {eg (@) = Tle, () = T{y, (p)+er, (p)} (35)

In (35) {y(p)} and {r(p)} are not known explicitly,nor is € for that
matter. We begin with the computation of the (n+l1)X(n+l) gram matrix
[B] for the sequence [Ei]’ [EZ]’ ceey [En], i.e.

[B] = [by,

fle>

<{ei(p)}, {ej(p)}>]

yl(P) + Erl(p)
= . . y1 (P)+€I‘1 P)ee.e ... yn+l (p)+€1-n

(P

6] (36)

yn+1 (p)+e rn+1

Since {y(p)} is a sequence of order n, the corresponding
[Y1], eees [Yn+1] sequences are linearly dependent. Thus there exists

then a nonsingular matrix [P] such that

{y, (@} {§i}
[¥] & : =1} . V= 37)
. {yn}
{yn+l(p)} 0

From the theory of orthoganal transformation the sequences
{;i(P)}, {;é(P)}, cens {;;(p)} must form an orthonormal set.

Similarly we obtain

{r,®) x, )
[R] = . = [P) . = [P]IR] (38)
{rn+1(p)} {;;+1(p)}

Observe in (38) the sequences {;i(P)}, ceny {;;+1(p)} are not orthonormal

to each other. Substitution of (37) and (38) into (36) yields

(8)




[P] [T+<K) (T+eR] " (p)”

—

|9

[
]

UM @ R+ mRE T e” (39)
Observe that

mm” - I (40)

" e g w =

O 1 O [(a+l)x(n+1)

where I is the nxn identity matrix and

o . @y, ®m} ... (T, @& ()}
R - ! 1 ! n (41)

T, @G @) .. E @) 0)

By utilizing the theorem on determinant expansion as presented in

Appendix A, we get

I ! e{rnﬂ(p)}'{yl(p)}

det(] = (erfpD?der || = =1 = == = = = =
O | @) 6, @)

+ terms of the order of 63 and higher

2
=g

[{r_ 1% @et[pD? + 0(e>) + ... (42)

Thus it is clear that \’det[gj is of the same order of magnitude

as the error measure €, i.e.

det[B] = O(e) (43)
In particular, a neccessary and sufficient condition for perfect
approximation of a signal of order n is that det[B] must vanish.
In order to find the error in the location of the poles first the
error in the diagonal cofactors of the gram matrix [B] has to be

estimated. The diagonal cofactors are given by:

€))




f{yl(p)+srl(p)} \ {

{y ip)+er (p)}

{y1+]_(p)+€r1+l(p)} * 4 {yl (P)+€rl(P) b... {Yi_l(P)+Cr1_l(P)}

——"

{y1+1(p)+eri+1(p) S {yn+1(p)+€rn+1(p)} (44)

\{ynﬂ(pmrnﬂ(p)y \

Let [§i] be the matrix which orthonormalizes the vectors, from

{yl(p)}...{yi_l(p)}{yi(p)}-..{yn+1(p)} to f;l(P)}...{;i_l(p)}{§i+1(p)}

...{;;+l(p)}. So we have
(@3 ) | 5, @)

(v, ®) 5, ,®) _
{ {y; 1@ } =1s,] {;i+1(p)} 4 [s,10Y,] (45)
k{yn+1(p)}J {;;+1(p)}J
({rl(P)} r{;i(p)} \

Y {r. . (»}

-1 - ) i1 -

i tryy 1) 54 ﬁ {r (! £ (s,Ry] (46)

Observe that the vectors {;i(p)} ves {;;+1(p)} are not 4 set of

orthonormal vectors. Substitution of (45) and (46) into (44) yields
T 2T 1Y s 1Tre 1T
= +
D, = det {[51][11 eR 1Y, +eR 17[S,) }

= (det[s, 1) det {[ii][fi]Tﬁ:[Ei][f_ilT-ﬁ-e[f_i][Ei]Tﬂz[Ed][E_i]T] @7

(10)




By utilizing
e
Y)Y, 1°= (1]
and applying the theorem on determinant expansion [as presented in

Appendix A] we obtain

ntl o

+ 2eeels;D?+{ T T G, @))(r, @) 48)
j=1 p=0
i#3

Dyy = Q4

where Qii are the diagonal cofactors of the gram matrix formed by
the sets [Y1], [Y2] . oo [Yn+1] and is given by (26). The underlying
assumption in (48) is of course we have the right order of the system
n, i.e.

det[G] = 0. (49)
Observe that (48) implies continuous differentiability of the diagonal
cofactors D,, with respect to the error €, so that

ii

l1im D
e+0

11=Q11 for all 1. (50)

Let zi be the approximate poles that are obtained by utilizing the

diagonal cofactors D, , instead of Qii in (31). So the poles z! are

ii i
the roots of the following equation
n+l
WD, (142" 2 g (51)
i=1 i i

Substitution of (48) into (51) illustrates that the approximate poles

zi are related to the exact poles z, by the relatiomnship

2
A =

zi zi + eFi + 0(e™) (52)

where Fi are certain constants. The approximate poles zi are again a

continuous function of €. So the error in the approximation (zi—zi)

is a continuous function of € and approaches zero uniformly as €-+0.

(11)




This is the unique feature of this technique. The continuous
dependence of the error in the pole locations on € is not guaranteed
by other optimization techniques and the classical nonlinear methods
based on Wiener filter theory [4-5].

6. Continuous Version of the Pencil of Function Method.

In the previous sections the approximation problem involved
discretizing a continuous function which was then processed digitally.
A strictly continuous version is also available. The problem is to
approximate the continuous function x(t) in the form given by (1), i.e.

g M4

x() = § VA (e} expl s t)
421 k=1 3K i

In this case we want to estimate si instead of exp{siT}. For the
continuous case the T operator of the previous sections is replaced

by the reverse time integral operator so that

xi+l(t) = {xi(f)df (53)

and xl(t) = x(t)
The two sided Laplace Transform of (53) is given by

© X (s)

X ,,(8) =_£ Xi+1(t)e_5tdt - ii (54)
and m
g Ty
X ()= ] ) 4 4. SN (55)
i=1 j=1 s (s-si) I (s-s )mi
g=1 1

Next we consider the pencil of functions defined by

{x ()2, (0], {x,y(e)=hxy ()}, ooy {x (E)-Ax p (D)} (56)

n+l
Since for this problem it is simpler to deal with the Laplace
transform, attention is focused on the set of pencil of functions defined by

{XI(S)-XX2(9)}. {X2(S)-AX3(S)},---. {X;(s)-lxh+1(8)} (57)

(12)




aad

The above set of pencil of functions displays some interesting
properties if checked for linear independence. Checking for linear
independence, we write

n
kzllak{xk(s)-xxk+l(s)}1 =0 (58)

Substitution of (54) into (58) yields

n
] " M a (s-X(s)] = 0

k=1
or

n

) " fa (s &y = (59)

k=1 I (s-si)mi

i=1

Equation (59) represents a polynomial in s of the order n. Since

1, s, 52, vees sn-1 span a n dimensional subspace, this set is linearly

independent and hence the set of n coefficients a, must be identically

k
zerc if (59) is to be satisfied for all values of s. The above holds

as long as X # Ai. For A = Ai’ it turns out that (59) has a root

s = Ai which can be factored out. The set 1, s, 32, ey s" spans

a (n-1) dimensional subspace. Nevertheless there remains n set of

coefficients ak. It is now possible for (59) to be satisfied with

at least one non-zero coefficient. This implies linear dependence of

the set (57) when A = Ai. So if A 1s a system pole then the gram

determinant of the set of functions in (57) will be zero. The gram

determinant of the given set in (56) is defined by i

r<xl-xx2, xl-kx2> e e s e e <x1-kx2, xn-Axn+

1>

(F] = . . (60)

<xn-Axn+1, xl-xx2> .« o e <xn-xxn+l, xn-Ax

n+1> .

(13)




where

<% xj> = éxi(t)xj(t)dt (61)

Thus det[F] = 0 if A is a system pole. After some tedious algebraic

manipulations it can be shown that

n+l n+l
det[F] = {] J Aiikn-i+1}{ y 1/Ajjkn_j+l} =0 (62)
1=1 =1

where Akk is the kth diagonal cofactor in the grammian [21] which is

defined by
—< > 7]
%y 0%; S e e e e e SKX D
1 ) .
[F'] = (63)
| Fne1? ¥y Xatl® *ot1”

The polynomial equation whose roots are the pole locations, is then

given by
v n+l
L BT =0 “
| i=1

After the poles s, have been obtained the residues are obtained by a

i

least squares fashion.
7. Examples

As an example consider the transient response of a conducting pipe
tested at the ATHAMAS-I Electromagnetic Pulse (EMP) simulator. The
conducting pipe is 10m long apd 1m in diameter. Hence the true resonance
of the pipe is expected to be in the neighborhood of 14MHz. Also the
pipe has been excited in such a way that it is reasonable to expect only
odd harmonics at the scattered fields. The data which have been
measured are the integral of the electric field and hence is available
in terms of a voltage. Thus, in addition to the frequencies of the
conducting pipe one should also observe a very dominant low frequency

pole. The same transient data as depicted in Figure 1 is used for

(14)




analysis. The results for a fifth and a seventh order system are as
follows:

For n = 5, the poles in radians/sec are

(-0.0029 + 30.083) x 10° (=13. 33MHz)
(-0.0428 + 30.217) x 10° (=35.20 MHz)
(~0.0098 ) x 10° (= 1.56 MHz)
For n = 7, the poles in radians/sec are
(-0.0058 + §0.084) x 10° (=13.40 Miz)
(~0.0270 + 0.219) x 10° (=35.10 Miz)
(~0.0270 + §0.550) x 10° (=87.60 Miz)
(~0.0012 ) x 10° (= 0.19 Miz)

It is interesting to observe that the real pole due to the
integrator has been obtained. This pole is a very dominant pole as
the data were recorded after having passed through an integrator.
The above results display a dynamic range of approximately 1000:1
for the values of poles of the conducting pipe.

Next the data were differentiated to get rid of the undesirable
dominang pole of the integrator. The differentiation was done
numerically. For a fourth and sixth order system the above results
have been recalculated as follows:

For n = 4, the poles in radians/sec are

(-0.0026 + §0.086) x 10° (=13.70 Miz)

(-0.0480 + j0.235) x 109 (=37.47 MH2)

For n = 6, the poles in radians/sec are

(~0.005 + $0.083) x 10° (=13.23 MHz)

(~0.034 + 30.221) x 10° (=35.59 Miz)

(-0.071 + 30.406) x 10° (= 65.9 Miz)
(15)




Here a good approximation to the poles has been obtained with only
four poles. Also, there seems to be a good agreement in the pole
locations obtained from the original integrated data and the numerically
differentiated data. It is also interesting to observe that indeed
the poles are occurring approximately at odd harmonics of the fundamental.
In figure 2, the true numerically differentiated data are plotted
against the reconstructed response of a sixth order system. The
plot has been normalized to unity amplitude. It is interesting to
note that there is a close agreement even in the very early times of
the two waveforms.
8. Conclusion
The pencil of function method has been applied to the approximation
of an arbitrary function by a sum of complex exponentials. The
important features of this technique are the natural insensitivity
to noise and the continuous dependence of the pole locations to the
integrated square error. Finally examples have been presented to
illustrate the stability of the pole locations yielded by the pencil

of function method.
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10. Appendix
Let A and B be two square NXN matrices. Let the columns of

A and B be represented by Ai and Bi for i=1,2,...,N. Denote

1
Cvi Ai if Vi 1

= Bi if vi=0

and the matrix constituted by the columns of

1 2 3 N

c-,c,c, ..., C' as ¢ . |
v Y, v3 Yy V sVgre e e aVy |
i

Then @
] = ] det] | |

det|[A+B]| = det|C
w0 TV Vpe ey

where in the second summation exactly m of the Vv,'s equal 1 and the

i

rest equal O.

This is a standard result of determinant expansien.

(18)
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